in

Posibles primeros rastros de las primeras estrellas del universo

Posibles primeros rastros de las primeras estrellas del universo | Noticias de Buenaventura, Colombia y el Mundo

Los astrónomos pueden haber descubierto los antiguos restos químicos de las primeras estrellas que iluminaron el Universo. Usando un análisis innovador de un quásar distante observado por el telescopio Gemini North de 8,1 metros en Hawai’i, operado por NOIRLab de la NSF, los científicos encontraron una proporción inusual de elementos que, según ellos, solo podrían provenir de los desechos producidos por todo el explosión de una estrella de primera generación de 300 masas solares.

Las primeras estrellas probablemente se formaron cuando el Universo tenía solo 100 millones de años, menos del uno por ciento de su edad actual. Estas primeras estrellas, conocidas como Población III, eran tan gigantescas que cuando terminaron sus vidas como supernovas se desgarraron, sembrando el espacio interestelar con una combinación distintiva de elementos pesados. Sin embargo, a pesar de décadas de búsqueda diligente por parte de los astrónomos, hasta ahora no ha habido evidencia directa de estas estrellas primordiales.

Mediante el análisis de uno de los cuásares conocidos más lejanos [1] utilizando el telescopio Gemini North, uno de los dos telescopios idénticos que componen el Observatorio Internacional Gemini, operado por NOIRLab de NSF, los astrónomos ahora creen que han identificado el material remanente de la explosión de una estrella de primera generación. Usando un método innovador para deducir los elementos químicos contenidos en las nubes que rodean al cuásar, notaron una composición muy inusual: el material contenía más de 10 veces más hierro que magnesio en comparación con la proporción de estos elementos que se encuentran en nuestro Sol.

Los científicos creen que la explicación más probable para esta sorprendente característica es que el material fue dejado atrás por una estrella de primera generación que explotó como una supernova de inestabilidad de pares. Estas versiones notablemente poderosas de explosiones de supernova nunca se han presenciado, pero se teoriza que son el final de la vida de estrellas gigantes con masas entre 150 y 250 veces la del Sol.

Las explosiones de supernova de inestabilidad de pares ocurren cuando los fotones en el centro de una estrella se convierten espontáneamente en electrones y positrones, la contraparte de antimateria cargada positivamente del electrón. Esta conversión reduce la presión de radiación dentro de la estrella, lo que permite que la gravedad la supere y provoque el colapso y la posterior explosión.

A diferencia de otras supernovas, estos dramáticos eventos no dejan restos estelares, como una estrella de neutrones o un agujero negro, y en su lugar expulsan todo su material a su entorno. Solo hay dos formas de encontrar evidencia de ellos. La primera es atrapar una supernova con inestabilidad de pares en el momento en que ocurre, lo cual es una casualidad muy poco probable. La otra forma es identificar su firma química a partir del material que expulsan al espacio interestelar.

Para su investigación, los astrónomos estudiaron los resultados de una observación anterior tomada por el telescopio Gemini North de 8,1 metros utilizando el espectrógrafo de infrarrojo cercano Gemini (GNIRS). Un espectrógrafo divide la luz emitida por los objetos celestes en sus longitudes de onda constituyentes, que transportan información sobre los elementos que contienen los objetos. Gemini es uno de los pocos telescopios de su tamaño con el equipo adecuado para realizar este tipo de observaciones.

Sin embargo, deducir las cantidades de cada elemento presente es una tarea complicada porque el brillo de una línea en un espectro depende de muchos otros factores además de la abundancia del elemento.

Dos coautores del análisis, Yuzuru Yoshii e Hiroaki Sameshima, de la Universidad de Tokio, han abordado este problema mediante el desarrollo de un método para utilizar la intensidad de las longitudes de onda en el espectro de un cuásar para estimar la abundancia de los elementos presentes allí. Fue mediante el uso de este método para analizar el espectro del cuásar que ellos y sus colegas descubrieron la proporción llamativamente baja de magnesio a hierro.

«Era obvio para mí que el candidato a supernova para esto sería una supernova de inestabilidad de pares de una estrella de Población III, en la que toda la estrella explota sin dejar ningún remanente atrás,-dijo Yoshii-.Me encantó y algo me sorprendió descubrir que una supernova de inestabilidad de pares de una estrella con una masa unas 300 veces mayor que la del Sol proporciona una proporción de magnesio a hierro que concuerda con el bajo valor que obtuvimos para el cuásar.«

Las búsquedas de evidencia química para una generación anterior de estrellas de Población III de gran masa se han llevado a cabo antes entre las estrellas del halo de la Vía Láctea y al menos se presentó una identificación tentativa en 2014. Yoshii y sus colegas, sin embargo, piensan que el El nuevo resultado proporciona la firma más clara de una supernova de inestabilidad de pares basada en la relación de abundancia de magnesio a hierro extremadamente baja que se presenta en este cuásar.

Si esto es evidencia de una de las primeras estrellas y de los restos de una supernova de inestabilidad de pares, este descubrimiento ayudará a completar nuestra imagen de cómo la materia en el Universo evolucionó hasta convertirse en lo que es hoy, incluidos nosotros. Para probar esta interpretación más a fondo, se requieren muchas más observaciones para ver si otros objetos tienen características similares.

Pero es posible que también podamos encontrar las firmas químicas más cerca de casa. Aunque las estrellas de Población III de gran masa se habrían extinguido hace mucho tiempo, las huellas químicas que dejan en el material expulsado pueden durar mucho más y aún pueden persistir en la actualidad. Esto significa que los astrónomos podrían encontrar las firmas de explosiones de supernovas de inestabilidad de pares de estrellas desaparecidas hace mucho tiempo que aún están impresas en objetos en nuestro Universo local.

«Ahora sabemos qué buscar; tenemos un camino», dijo el coautor Timothy Beers, astrónomo de la Universidad de Notre Dame. «Si esto sucedió localmente en el Universo primitivo, lo que debería haber sucedido, entonces esperaríamos encontrar evidencia de ello».

notas

[1] La luz de este quásar ha estado viajando durante 13.100 millones de años, lo que significa que los astrónomos están observando este objeto tal como aparecía cuando el Universo tenía solo 700 millones de años. Esto corresponde a un corrimiento al rojo de 7.54.

Fuente de la Noticia

El atractivo de lo incompleto – Museos Nacionales de Berlín | Noticias de Buenaventura, Colombia y el Mundo

El atractivo de lo incompleto – Museos Nacionales de Berlín

Marihuana legal, pero los uruguayos siguen prefiriendo el mercado negro | Noticias de Buenaventura, Colombia y el Mundo

Marihuana legal, pero los uruguayos siguen prefiriendo el mercado negro